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1.0 Introduction 
 
 The purpose of using statistical distributions is to make inferences about some 
behavior of a population by using a sample of the population. Since the characteristics 
(probability density) of the data is not always the same, many different statistical 
distributions exist. Some of these statistical distributions include Normal, Lognormal, 
Chi-square, F, Exponential, Gamma and Weibull. For screening electronic assemblies, 
the distribution of interest is the failure density over time. A model for failure density 
(shown below) is often called the bath-tub curve.  
 
 This document will describe the procedural steps required to determine the 
parameters for a Weibull distribution and then use the Weibull distribution to choose the 
minimum exposure time for an environmental stress screening process. In this paper, 
sample data will be used to demonstrate each of the mathematical expressions and create 
plots which will be ultimately used to determine screening duration. 
 

 
 
 
 The bath-tub curve is composed of three distinct regions: the decreasing hazard 
rate region (infant mortality), constant hazard rate region (useful life) and the increasing 
hazard rate region (wear out). The objective of screening electronic assemblies is to 
accelerate the aging of the assemblies so that they have reached the useful life region 
before shipment to the customer.  The most widely used mathematical model for 
describing the failure behavior of electronic assemblies over time is the Weibull 
distribution function.  This document will describe the procedural steps required to 
determine the parameters for a Weibull distribution and then use the Weibull distribution 
to choose the minimum exposure time for an environmental stress screening process. In 
this paper, sample data will be used to demonstrate each of the mathematical expressions 
and create plots which will be used to determine screening duration. 
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2.0 The Weibull Function 
 
The Weibull three parameter probability density function: 
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The Weibull three parameter hazard rate function: 
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The Weibull three parameter reliability function: 
 

( )3R( )t exp
t t 0
η t 0

β

 
 
 where: 
  β = the shape parameter 
  η = the characteristic life 
  t0 = the minimum lifetime 
  t = time 
 
 These functions are the three parameter Weibull functions. When applied to the 
infant mortality region of the bath-tub curve, electronic assemblies generally do not have 
a minimum lifetime (t0 = 0).  A situation where a product may have a minimum lifetime 
occurs when a product needs to fully execute a loop of a test before the first opportunity 
for failure reporting takes place. When the minimum lifetime parameter is removed from 
the Weibull functions, a set of two parameter Weibull functions result. 
 
The Weibull two parameter probability density function: 
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The Weibull two parameter hazard rate function: 
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The Weibull two parameter reliability function:  
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Since R(t) = 1 - F(t), it can be substituted into equation 6  
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 The shape of the Weibull hazard rate curve is determined by the two constants β 
(the shape parameter) and η (the characteristic life). When β < 1, the hazard rate curve 
shows a decreasing hazard rate which corresponds to the infant mortality region of the 
bath-tub curve. When β = 1, the function reduces to the exponential distribution and the 
hazard rate curve shows a constant hazard rate which corresponds to the useful life region 
of the bath-tub curve. When β > 1, the hazard rate curve shows an increasing hazard rate 
which corresponds to the wear-out region of the bath-tub curve.  
 
 The values for β and η are determined through an analysis of the results of 
screening operation. The screening operation will have units which pass, fail or were 
suspended. A suspended unit is defined as a non-failed unit which has had it screening 
time terminated before other members of the non-failing population. If all units in the 
population have their screen started and terminated at the same time and no units are 
removed before the end of the screen, no suspended units will exist. When a screening 
operation resembles a first-in first-out queue, units in the population will have slightly 
different screening durations in which case suspensions are possible.  
 
 The data extracted from the screening process includes product part number, 
sample size, pass/fail and elapsed time (or time of failure). A unit which passes and has a 
lower elapsed time than a failed unit will be considered a suspended unit. If the unit is 
executing a test sequence, the number of loops may be extracted as well to ensure that at 
least one successful pass was executed. A unit which fails to complete a single pass may 
have been defective prior to the start of the screen. Such units are likely to belong to a 
different failure distribution. Since each product type may have different failure behavior, 
the required screen duration (or screen type) is expected to be different for each product 
type. The product part number extracted from the screening operation is used to 
distinguish and group the data for the Weibull analysis.  
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 During the Weibull analysis, the results of the screen will be transformed to 
ensure they fit a Weibull distribution. If successful, the values for β and η will be found 
and substituted into the Weibull hazard rate function to create a mathematical expression 
which describes the failure behavior of the units screened. The screening duration can be 
determined by finding the time for a specific slope or magnitude of the hazard rate curve 
or through the application of Bayesian Analysis. After the screening time has been found, 
the 90% confidence limits calculated during the analysis can provide the range of 
prediction certainty for the resulting screening time. The more failing units in the 
analysis, the greater the prediction certainty.    
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4.0 Procedure 
 
4.1 Data must be gathered from screened units to perform the Weibull fit. Ideally, the 
number of failed items in the sample should exceed 31 to allow for the greatest accuracy 
in the determination of the Weibull parameters β andη. A smaller number of failures in 
the sample can be used and the confidence limits will be adjusted to reflect the loss of 
prediction accuracy. 
 
 
4.2 The data extracted from the sample include: 
 
 a. fail (F), pass(P) or suspended (S) 
 b. time of failure or suspension 
 c. number of test loops completed 
 d. sample size  
 
 Data points for which the failing unit did not complete a single pass will be 
excluded from consideration for calculating screening duration since their failure 
distribution is clearly different than the remaining population. These units were likely to 
have been defective before entering the screening process. The data from the failing 
units, however, will be used in the calculations for ranking all failing units. This Weibull 
plot will treat all failures as though they belong to the same distribution (single mode 
Weibull). 
 
4.3 The failing and suspended data must then be arranged in ascending order of time and 
then numerically ranked with integers in reverse order. The first integer for reverse 
ranking is equal to the sample size. Below is the set of sample data used throughout this 
paper. In this example, the sample size is 200. 
 
Table 1 - Ranked Data 

Item RR 
“Reverse 

Rank” 

Loops Time (hours) Fail (F) / 
Suspension (S) 

A 200 0 0 F 
B 199 0 0 F 
C 198 1 0.2 F 
D 197 2 0.8 F 
E 196 3 1.0 S 
F 195 6 1.3 F 
G 194 11 2.1 F 
H 193 24 5.8 F 
I 192 25 7.0 S 
J 191 40 8.9 F 
K 190 69 12.7 F 
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4.4 Rank order numbers (RN) will be assigned only to the items which failed. This 
ranking will include item(s) that have failed at time = 0 or number of loops = 0. The 
expression for the rank order increment (RI) is given by: 
 
            (sample size + 1) - RNi-1  
 RIi = ------------------------------   (8) 
          1 + RRi 
  
The rank order number is given by: 
 
 RNi = RIi + RNi-1     (9) 
 
Equations (1) and (2) can be combined into the following expression: 
 
              (sample size + 1) - RNi-1  
 RNi = ------------------------------- + RNi-1  (10) 
          1 + RRi 
  
 where: 
  i =   a particular failed item starting from the failed item with the  
         highest reverse rank number. In this example it is item A since  
         it failed and had the highest reverse rank number (200). 
   
  RRi = the reverse rank number for the item whose rank is being calculated 
 
  RNi-1 = 0 for the first item considered since there is no previous  
   rank order number 
 
  sample size = the total number of items in the sample (failed and   
              suspended items) 
 
For items A through D, the increments will be one because there is no suspended data 
between them. The rank order numbers for items A through D will, therefore, be 1.00, 
2.00, 3.00 and 4.00. Since items E and J were suspended, they will not have rank order 
numbers. Item F will have a rank order number with a fractional component since 
suspended item(s) were between it and the next earlier failure. For item F, the calculated 
value rank order will be: 
 
             (200 + 1) - 4  
 RNi = --------------- + 4     
     1 + 195 
 
        = 5.0051 
 
 
The previous table with all the rank order values in place is provided below: 



Accolade Engineering Solutions 9 B. Peterson  

 
Table 2 - Sample Data Table with Rank Order Values Supplied 

Item RR 
“Reverse 

Rank” 

Rank 
Order 

Number 

Loops Time (hours) Fail (F) / 
Suspension (S) 

A 200 1.00 0 0 F 
B 199 2.00 0 0 F 
C 198 3.00 1 0.2 F 
D 197 4.00 2 0.8 F 
E 196 - 3 1.0 S 
F 195 5.0051 6 1.3 F 
G 194 6.0102 11 2.1 F 
H 193 7.0153 24 5.8 F 
I 192 - 25 7.0 S 
J 191 8.0256 40 8.9 F 
K 190 9.0359 69 12.7 F 
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4.5 The median rank values for all the failed units are now added to the table. An 
approximation for the median rank values is given by: 
  
        RNi - 0.3 
 MRi = ----------------------    (11) 
  sample size + 0.4 
 
 where: 
  RNi = the rank order number for the item whose median rank is being  
            calculated 
 
  sample size = the total number of items in the sample (failed and   
              suspended items) 
 
 For item E, the calculated median rank value will be: 
 
   3.29 - 0.3 
 MRi = -------------- 
   10 + 0.4 
 
         = 0.288 or 28.8% 
 
The previous table with all the median rank values in place is provided below: 
 
Table 3 - Sample Data Table with Median Rank Values Supplied 
Item RR 

“Reverse 
Rank” 

Rank 
Order 

Number 

MR 
“Median 
Rank”  

Loops Time 
(hours) 

Fail (F) / 
Suspension (S) 

A 200 1.0000 0.0035 0 0 F 
B 199 2.0000 0.0085 0 0 F 
C 198 3.0000 0.0135 1 0.2 F 
D 197 4.0000 0.0185 2 0.8 F 
E 196 - - 3 1.0 S 
F 195 5.0051 0.0235 6 1.3 F 
G 194 6.0102 0.0285 11 2.1 F 
H 193 7.0153 0.0335 24 5.8 F 
I 192 - - 25 7.0 S 
J 191 8.0256 0.0386 40 8.9 F 
K 190 9.0359 0.0436 69 12.7 F 



Accolade Engineering Solutions 11 B. Peterson  

4.6  For median rank values, a 90% confidence limit band will be constructed. A 90% 
confidence band will consist of a 5% confidence limit (lower confidence limit) and a 
95% confidence limit (upper confidence limit). The expressions below will determine the 
5% and 95% confidence limits for rank order numbers which have no fractional 
components (integers). When the rank order number has a fractional component, the 5% 
and 95% limits will be determined by linearly interpolating between the closest upper 
and lower integers. The rank order number of 5.0051, for example, will be interpolated 
between 5.0000 and 6.0000.   
 
For the 5% Limit the expression is: 
 
                                    j 
                             ------------ 
                              n - j  + 1 
CL5% = ------------------------------------------   (12) 
                                                      j 
             [ Fα , 2(n-j+1) , 2j] +  ---------- 
                                                n - j + 1   
 
 
For the 95% Limit the expression is: 
 
                    j 
              ------------ * [ Fα , 2j , 2(n-j+1)] 
               n - j  + 1 
CL5% = ------------------------------------------   (13) 
                            j 
              1 +  ----------- * [ Fα , 2j, 2(n-j+1)] 
                      n - j + 1 
 
Where: 
 j = rank order number (integer) 
 n= number of units in the sample 
 [Fα , v1 , v2 ] = the value of Fα   for which the distribution has an area of 
    α to the right of Fα    
  where: 
   α = the area to the right of the F-value to be determined 
   v1 = the degrees of freedom for the numerator   
   v2 = the degrees of freedom for the denominator 
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The F-distribution function is given by: 
 
           Γ[ ( v1 + v2 ) / 2 ] * ( v1 / v2)(v1/2)                f v1/2 -1 
h(f) = ---------------------------------------- * --------------------------- (14) 
                     Γ( v1/2 ) * Γ( v2/2 )                ( 1 + v1f/ v2 ) ( v1+ v2)/2 
 
where: 
 f = the independent variable in the function 
 Γ = the gamma function, which is given by: 
 
            ⌠ ∞ 
            Γ(n) = ⎮      xn-1 * e-x dx    (15) 
            ⌡0   
 
For integer operands, the gamma function reduces to: 
 
 Γ(n) = (n-1)!      (16) 
 
If we combine equations (7) and (9) we get: 
 
            [ ( v1 + v2 ) / 2 -1 ]! * ( v1 / v2)(v1/2)                f v1/2 -1 
h(f) = ------------------------------------------- * --------------------------- (17) 
                     ( v1/2 -1 )! * ( v2/2 - 1 )!            ( 1 + v1f/ v2 ) ( v1+ v2)/2 
 
 
To determine the area under the F-distribution curve, equation (17) will be integrated 
between the limits of 0 and Fα. Fα is the value we seek which provides a result of 0.95 for 
the integral. This integral calculates the area left of Fα. Due to the complexity of the 
integral, numerical techniques (trapezoid method) will be used to solve the following 
expression:   
 
            ⌠ Fα  [ ( v1 + v2 ) / 2 -1]! * ( v1 / v2)(v1/2)                f v1/2 -1 
0.95 =  ⎮     ------------------------------------------ * --------------------------- * df    (18) 
            ⌡0              ( v1/2 -1 )! * ( v2/2 -1 )!             ( 1 + v1f/ v2 ) ( v1+ v2)/2 
 
For the example data, the 5% and 95% confidence limit values for item B are calculated 
as follows: 
 
 n = 200   (sample size) 
 j = 2  (rank order number for item B) 
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For the 5% Limit the, solution is: 
 
                                      2 
                             ---------------- 
                              200 - 2  + 1 
CL5% = --------------------------------------------------    
                                                                2 
             [ 0.05 , 2(200-2+1) , 2*2] +  --------------- 
                                                        200 - 2 + 1   
 
               0.01005 
     = --------------------- 
           5.64 + 0.01005 
 
     = 0.0018 or 0.18% 
 
 
For the 95% Limit, the solution is: 
 
                         2 
               ---------------- * [ 0.05 , 2*2 , 2(200-2+1)] 
                200 - 2  + 1 
CL95% = ----------------------------------------------------- 
                             2 
               1 +  ------------- * [ 0.05 , 2*2, 2(200-2+1)] 
                        9 - 2 + 1 
 
            0.01005 * 2.40 
      = ------------------------------  
            1 + 0.01005 * 2.40 
 
      = 0.0236 or 2.36% 
 
For item F (rank order number 5.0051), we will interpolate between rank order numbers 
5 and 6. The 5% and 95% confidence limit values for rank order numbers 5 and 6 are 
given below: 
 
Table 4 - Interpolation Limits 

 rank order 5 rank order 6
5% value 0.0099 0.0131 
95% value 0.0453 0.0519 
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The expression for a simple linear interpolation between two points is given by: 
 
               ( y2 - y1 ) 
y = y1 + ------------ * ( x - x1 )    (19) 
               ( x2 - x1 ) 
 
For the 5% confidence limit data above with: 
 (x1 , y1) = (5, 0.0099) and  
 (x2 , y2) = (6, 0.0131),  
 the result is: 
  
                             (0.0131 - 0.0099) 
CL5% = 0.0099 + ---------------------- * (x - 5) 
                                       (6 - 5) 
 
CL5% = 0.0099 + 0.0032(x - 5) 
 
CL5% = 0.0032x - 0.0061 
 
For the rank order number of 5.0051, the interpolated 5% confidence limit value is: 
 
CL5% = 0.0032(5.0051) - 0.0061 
 
          = 0.0099 or 0.99% 
 
For the 95% confidence limit data above with: 
 (x1 , y1) = (5, 0.0453) and  
 (x2 , y2) = (6, 0.0519) 
  
 the result is: 
  
                              (0.0519 - 0.0453) 
CL95% = 0.0453 + --------------------- * (x - 5) 
                                       (6 - 5) 
 
CL95% = 0.0453 + 0.0066(x - 5) 
 
CL95% = 0.0066x + 0.0123 
 
For the rank order number of 5.0051, the interpolated 95% confidence limit value is: 
 
CL95% = 0.0066(5.0051) + 0.0123 
 
           = 0.0453 or 4.53% 
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The previous table with all the 5% and 95% confidence limit values in place is provided 
below. The information which is no longer needed has been removed from the table. 
 
Table 5 - Sample Data Table with 5% and 95% Confidence Limit Values Supplied 
Item MR 

“Median 
Rank” 

CL5%  
“5% confidence 

limits” 

CL95% 
“95% confidence 

limits” 

Loops Time 
(hours) 

Fail (F)/ 
Suspension 

(S) 
A 0.0035 0.0003 0.0154 0 0 F 
B 0.0085 0.0018 0.0236 0 0 F 
C 0.0135 0.0041 0.0313 1 0.2 F 
D 0.0185 0.0069 0.0385 2 0.8 F 
E - - - 3 1.0 S 
F 0.0235 0.0099 0.0453 6 1.3 F 
G 0.0285 0.0131 0.0520 11 2.1 F 
H 0.0335 0.0166 0.0585 24 5.8 F 
I - - - 25 7.0 S 
J 0.0386 0.0201 0.0649 40 8.9 F 
K 0.0436 0.0237 0.0716 69 12.7 F 
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4.7 To smooth the data and determine if the sample data fits a Weibull distribution, it is 
desirable to transform the Weibull reliability function (and the sample data) so the 
transformed sample data will plot as a straight line. Since the Weibull reliability function 
is a double exponential, we will need to take the double logarithm of both sides of the 
function to “linearize” it. 
 
From the original function: 
 
 R(t) = 1 - F(t) = exp[-(t/η)β] 
 
 since 1 - F(t) = 1 - MRi , 
 
 1- MRi = exp[-(t/η)β] 
 
from which we derive: 
 
 1/(1- MRi)= exp(t/η)β 
 
 ln [1/ (1 - MRi)] = (t/η)β 
 
 ln ln [1/ (1 - MRi)] = β ln(t) - β ln(η)   (20) 
 
 where: 
  MRi = the median rank values 
  t = time 
  β = shape parameter (to be determined from failure data) 
  η = characteristic life (to be determined from failure data) 
 
The median rank, the time and the 5% and 95% confidence limits will undergo the 
following transformation prior to plotting: 
 
 Y = ln ln [1/ (1 - MRi)]  
 X = ln(t) 
 Y5% = ln ln [1/ (1 - CL5%)] 
 Y95% = ln ln [1/ (1 - CL95% )] 
 
 where: 
  MRi = the median rank values 
  t = time to failure 
  CL5% = the 5% confidence limit (not expressed as %) 
  CL95% = the 95% confidence limit (not expressed as %) 
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The sample data with the data transformations supplied is shown below. The columns of 
the data table which are no longer used have been discarded. Also, the failure data for 
which time = 0, loops = 0 or were suspended will not be used on the Weibull plot and, 
therefore, will not be transformed. 
  
Table 6 - Sample Data Table with Data Transformations Supplied 
Item MR 

“Median 
Rank”   

Y  
 

CL5% Y5% CL95% 
 

Y95% Time 
(hours) 

X 
“ln(t)” 

Loops 

A 0.0035 - 0.0003 - 0.0154 - 0 - 0 
B 0.0085 - 0.0018 - 0.0236 - 0 - 0 
C 0.0135 -4.298 0.0041 -5.495 0.0313 -3.448 0.2 -1.61 1 
D 0.0185 -3.981 0.0069 -4.973 0.0385 -3.238 0.8 -0.22 2 
E - - - - - - 1.0 - 3 
F 0.0235 -3.739 0.0099 -4.610 0.0453 -3.071 1.3 0.26 6 
G 0.0285 -3.543 0.0131 -4.329 0.0520 -2.930 2.1 0.74 11 
H 0.0335 -3.379 0.0166 -4.090 0.0585 -2.809 5.8 1.76 24 
I - - - - - - 7.0 - 25 
J 0.0386 -3.235 0.0201 -3.897 0.0649 -2.702 8.9 2.19 40 
K 0.0436 -3.110 0.0237 -3.730 0.0716 -2.600 12.7 2.54 69 
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4.8 From the data points for the median ranks (with time > 0 and loops > 0), a line of best 
fit will be determined using linear regression (method of least squares). The linear 
regression line will have the familiar form: 
 
 Y = AX + B 
 
The values for “A” and “B” will be determined using the following expressions: 
  
       n ∑Xi Yi - ∑Xi ∑Yi 
A = ----------------------    (21)  
         n ∑Xi

2 - (∑Xi)2 
 
        ∑Yi ∑Xi

2 - ∑Xi ∑ XiYi 
B = ----------------------------     (22) 
             n ∑Xi

2 - (∑Xi)2 
 
 where: 
  n = number of data points  
  Xi = “X” value of data point where i goes from “1” to “n” 
  Yi = “Y” value of data point where i goes from “1” to “n” 
 
Table 7 - Data Points for Linear Regression 
data point, i = “Xi” value “Yi” value 

1 -1.61 -4.298 
2 -0.22 -3.981 
3 0.26 -3.739 
4 0.74 -3.543 
5 1.76 -3.379 
6 2.19 -3.235 
7 2.54 -3.110 

 
Table 8 - Summation Table for Linear Regression 

 Xi Yi Xi Yi Xi
2 

i = 1 -1.61 -4.298 6.9198 2.5921 
i =2 -0.22 -3.981 0.8758 0.0484 
i = 3 0.26 -3.739 -0.9721 0.0676 
i = 4 0.74 -3.543 -2.6218 0.5476 
i = 5 1.76 -3.379 -5.9470 3.0976 
i = 6 2.19 -3.235 -7.0847 4.7961 
i = 7 2.54 -3.110 -7.8994 6.4516 
∑ 5.66 -25.285 -16.7294 17.6010 
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        (7 * -16.7294) - (5.66 * -25.285) 
A = -----------------------------------------  
            (7 * 17.6010) - (5.66)2 
 
   = 0.285 
 
        (-25.285 * 17.6010) - (5.66 * -16.7294) 
B = --------------------------------------------------  
                  (7 * 17.6010) - (5.66)2 
 
   = -3.843 
 
The equation for the regression line, therefore, is: 
 
 Yr = 0.285X - 3.843 
 
Later when the regression line is used for plotting confidence limits, we will be 
determining new “X” values from known “Y” values. For this purpose, the regression 
line expression will also be solved for variable “X”. 
 
 Xr = (Y - B)/A 
 
 Xr = (Y + 3.843) / 0.285 
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4.9 Using the regression line expression, a new set of points will be added to the data 
table of values to plot. The “Y” values from table X ( ln ln [1/ (1 - MRi)]  ) from the data 
table will be used to calculate another set of “X” values (labeled Xr) will allow us to draw 
the regression line on the plot.  
 
Table 9 - New Data Points to Plot Regression Line 

Item Y  
 

Xr 
 

A - - 
B - - 
C -4.298 -1.596 
D -3.981 -0.484 
E - - 
F -3.739 0.365 
G -3.543 1.053 
H -3.379 1.628 
I - - 
I -3.235 2.133 
J -3.110 2.572 

 
Table 10 - Data Table with only the values for plotting 

X Xr Y  Y5% Y95% 
-1.61 -1.596 -4.298 -5.495 -3.448 
-0.22 -0.484 -3.981 -4.973 -3.238 
0.26 0.365 -3.739 -4.610 -3.071 
0.74 1.053 -3.543 -4.329 -2.930 
1.76 1.628 -3.379 -4.090 -2.809 
2.19 2.133 -3.235 -3.897 -2.702 
2.54 2.572 -3.110 -3.730 -2.600 



Accolade Engineering Solutions 21 B. Peterson  

The Weibull Plot will consist of four items: a set of points, a regression line, an upper 
confidence limit curve and a lower confidence limit curve. The columns from Table 10 
used to plot each item is given below: 
 
Table 11 - X and Y columns used for plotting 

 abscissa (X-axis) ordinate (Y-axis) 
Set of Points X Y 

Regression Line Xr Y 
Upper Confidence 

Limit 
Xr Y95% 

Lower Confidence 
Limit 

Xr Y5% 

 
The plot of the data in table 10 is shown below: 
 

Weibull Plot

-6

-5

-4

-3

-2

-1

0

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

ln(time)

ln
ln

(1
/(1

-M
R

)) regression line

failure data

low er confidence limit

upper confidence limit

 
 When the data points are closely clustered around the regression line, the 
behavior of the data can be described by the Weibull distribution. The confidence limits 
indicate our prediction accuracy based on the number of plotted data points. As more 
points are plotted, the confidence limits will move closer to the regression line. The 
confidence limits can be used in two ways.  
 
 The first use of the confidence limits is to determine the ranges for the expected 
percentage of failures for a specified time. To perform this exercise, one will draw a 
vertical line from the x-axis which intersects the specified “ln(time)” and also intersects 
both confidence limit curves. Next, draw a horizontal line from each point of intersection  
with the confidence limit curves to the y-axis. Two values will be read from the y-axis. 
These values will need to be transformed back into median rank values using the 
following expression: 
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 rank % = 100 * ( 1 - 1 / exp(exp(y)) )    (23) 
 
  where: 
   y = the value read from the y-axis where 
         the horizontal line intersects 
   rank % = cumulative failures 
 
 The two rank percentages, which we will call rank%low and rank%high, tell us that 
for a given screening time we are 90% confident that between rank%low and rank%high of 
the population will have failed. 
 
 The second use of the confidence limits is to determine the ranges for the 
expected time for a specified percentage of failures. To perform this exercise, one will 
draw a horizontal line from the y-axis which intersects the specified cumulative failure 
percent  
(transformed by lnln(1/(1-MR)) ) and also intersects both confidence limit curves. Next, 
draw a vertical line from each point of intersection  with the confidence limit curves to 
the x-axis. Two values will be read from the x-axis. These values will need to be 
transformed back into time values using the following expression: 
 
 time = exp(x)      (24) 
 
  where: 
   x = the value read from the x-axis where 
         the vertical line intersects  
   time = screening time 
 
 The two time values, which we will call timelow and timehigh, tell us that for a 
given percentage of failures we are 90% confident that the failure percentage will be 
reached in the interval between timelow and timehigh. 
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4.10 From the regression line expression, the values for β and η will be determined. 
 
 The regression line expression was: 
 
 Yr = AX + B 
 
 Where: 
  A = 0.285 
  B = -3.843 
  
 The transformed Weibull function was:   
 
 ln ln [1/ (1 - MR)] = β ln(t) - β ln(η) 
 
 When compared with the regression line expression, we see that 
 
 Yr = ln ln [1/(1 - MR)]  
 A = β 
 X = ln(t) 
 B = -β ln(η) 
 
 Now that  β has been found, we still need to find the value for η (which is the 
characteristic life). The characteristic life is the time at which F(t) = 0.632 (the time when 
63.2% of the population will have failed).   
 
Since: R(t) = 1 - F(t) 
 
 R(t) = 1 - 0.632  
 
And: 
  1 - MR = R(t) 
 
We get: 
 1- MR = 0.368 
 
Substituting into equation 20: 
 
 ln ln [ 1/(1-MR) ] = β ln(t) - β ln(η) 
 
 ln ln [ 1 / 0.368 ] = β ln(t) - β ln(η) 
 
 0 =  β ln(t) - β ln(η) 
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Now solve for η: 
 
 β ln(t) = β ln(η) 
 
 ln(t) = ln(η) 
 
 η = t      (25) 
 
using the regression line expression we get: 
 
 0 = A * X + B 
 
 X = -B/A 
 
 X = -[ -3.843/0.285 ] 
 
 X = 13.484 
 
Since: ln(t) = X 
 
 t = eX 

 
 t = e13.484 

 
 t = 717,989 
 
∴ η = 717,989 
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4.11 Now that  β and η have been determined, their values will be substituted into the 
Weibull hazard rate function. The Weibull hazard rate function will also be used to 
generate a set of points to plot the Weibull hazard function. 
  
 h(t) = (β/η) * (t/η) (β-1) 
 
 h(t) = (0.285/717,989) * (t/717,989) (0.285-1) 
 
 h(t) = (0.285/717,989) * (t/717,989) (-0.715) 
 
The hazard rate plot will have time on the abscissa (X-axis) and h(t), the instantaneous 
hazard rate, on the ordinate (Y-axis). The hazard rate expression will not be evaluated for 
time values of zero. 
 
Table 12 - Data Points for Weibull Hazard Rate Plot 

Item Time (hours) h(t) 
A - - 
B - - 
C 0.2 0.019303 
D 0.8 0.007164 
E 1.0 0.006107 
F 1.3 0.005063 
G 2.1 0.003593 
H 5.8 0.001738 
I 7.0 0.001519 
J 8.9 0.001279 
K 12.7 0.000992 
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4.12  Now the Weibull hazard rate function can be used to determine the screening 
duration of an screening process. One method is to use the products known MTBF value. 
The MTBF value is essentially the inverse of the hazard rate value that is modeled by the 
Weibull function when the shape parameter is one.  The screening time termination is 
selected when the decreasing exponential of the hazard rate function (shape parameter < 
1) crosses a horizontal line which signifies the 1/MTBF value. This method can lead to 
unreasonably long screening times.  
 

Another method selects the screening time termination at the moment that the 
hazard rate curve slope value approaches a small negative number. A slope value that is a 
small negative number suggests that the hazard rate is nearly constant. The smaller the 
negative number the longer the screening time. Slope values less than or equal to -
0.00005 are generally used. 
 
 To find the required screening time for a particular hazard rate, the hazard rate 
expression will be differentiated and solved for time.  
 
hazard rate expression: 
 
 h(t) = (β/η) * (t/η) (β-1) 
  
the differentiated hazard rate expression: 
 
 h’(t) =  [β * (β - 1) * t(β-2) ] / ηβ   (26) 
 
the differentiated hazard rate expression solved for t (time): 
 
 t =   [ (ηβ * h’(t)) / (β * (β - 1)) ](1/(β-2))  (27) 
 
 where: 
  η = a constant (characteristic life), determined from failure data 
  β = a constant (shape parameter), determined from failure data  
  h’(t) = hazard rate slope (a small negative number) 
  t = screening time 
 
for the sample data, the optimum screening time is: 
 
 t =   [ (717,9890.285 * -0.00005) / (0.285 * (0.285 - 1)) ](1/(0.285-2))  
 
 t = 13.55 hours 
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4.13 A more complicated and more accurate approach that is used to determine screening 
duration is with Bayesian Analysis.  Using Bayesian Analysis, the probabilities of a 
failure belonging to the weak subpopulation and to the main population are evaluated to 
find the cumulative failure percentage at which the weak subpopulation has been 
eliminated. This failure percentage value will be transformed and substituted into the 
regression formula to find the proper screening time. 
 
The parameters for the weak subpopulation is: 
 
 β1 and η1 
 
 where: 
  β1 = the shape parameter from the Weibull Analysis 
  η1 = the characteristic life from the Weibull Analysis 
 
The parameters for the main population is: 
 
 β2 and η2 
 
 where: 
  β2 = the shape parameter for constant hazard rate (=1) 
  η2 = the MTTF of the product (we will use 100,000hrs.) 
 
The probability of a failure “i” belonging to the weak subpopulation is: 
 

P i

f 1
t i

f 1
t i

f 2
t i

( )29

 
 
where: 
 

( )30f 1
t i

..
β 1
η 1

exp
t i
η 1

β 1 t i
η 1

β 1 1

 
 
and  
 

f 2
t i

..
β 2
η 2

exp
t i
η 2

β 2 t i
η 2

β 2 1

( )31

  
 
ti = the time to failure for a member of the failing population 
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If expressions 29,30 and 31 are combined, we get: 
 
 

P i

..
β 1
η 1

exp
t i
η 1

β 1 t i
η 1

β 1 1

..
β 1
η 1

exp
t i
η 1

β 1 t i
η 1

β 1 1

..
β 2
η 2

exp
t i
η 2

β 2 t i
η 2

β 2 1
( )32

  
   
 
The proportion of the weak subpopulation is given by: 
 

p i

P i

N
( )33

 
 
 
If expression 32 and 33 are combined, we get: 
 
 

( )34

p

i

..
β 1
η 1

exp
t i
η 1

β 1 t i
η 1

β 1 1

..
β 1
η 1

exp
t i
η 1

β 1 t i
η 1

β 1 1

..
β 2
η 2

exp
t i
η 2

β 2 t i
η 2

β 2 1

N  
 
Where: 
 N = is the sample size (pass, fail and suspended units) 
 p-bar = the proportion of the sample belonging to the weak subpopulation 
 β1 = the shape parameter from the Weibull Analysis 
 η1 = the characteristic life from the Weibull Analysis 
 β2 = the shape parameter for constant hazard rate (=1) 
 η2 = the MTTF of the product (we will use 100,000hrs.) 
 ti = the time to failure for a member of the failing population 
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The values for time, f1/ti, f2/ti and Pi are given in the table 13 below: 
 
Table 13 - Intermediate values for Bayesian Analysis 

Failure 
Times 

f1/ti f2/ti Pi 

0 0 0 1 
0 0 0 1 

0.2 0.019043 0.000010 0.999475 
0.8 0.007021 0.000010 0.998578 
1.3 0.004947 0.000010 0.997983 
2.1 0.003499 0.000010 0.997150 
5.8 0.001677 0.000010 0.994072 
8.9 0.001229 0.000010 0.991929 
12.7 0.000949 0.000010 0.989572 

 
Note that the Pi values for failures at ti  = 0 are assigned a probability of one since we are 
100% certain that they do not belong to the main population and the suspended units 
have been excluded from table 13 since they were not failed units. 
 
When we sum the last column of table 13, we get: 
 
∑ Pi = 8.968759 
 
p-bar = ∑ Pi/N  
 
         = 8.968759/200 
 
         = 0.044844 or 4.5% 
 
This number implies that all the members of the weak subpopulation will have failed 
when 4.5% of the sample has failed. The p-bar value will be transformed as was done 
with the median rank values to allow it to be used with the regression formula. Using 
equation 20 and the previously determined values for β and η 
 
 ln ln [1/ (1 - MRi)] = β ln(t) - β ln(η)    
 
 ln ln [1/(1 - 0.045)] = 0.285ln(t) - 0.285ln(717,989) 
 
 -3.078 = 0.285ln(t) - 3.843 
 
 ln(t) = 2.68 
 
 t (screening time) = 14.6 hours 
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5.0 Summary 
 
 The Weibull function can effectively model failure behavior of products during 
their normal mission mode or during accelerated environments. Actual product failure 
behavior is used to empirically determine the two parameters of a two parameter Weibull 
function. These parameters are the shape parameter and the characteristic life. For 
products that have a minimum guaranteed life before the first failure occurs or can be 
detected should use the three parameter Weibull model. The additional parameter of the 
three parameter Weibull model over the two parameter Weibull model is called the 
minimum life.  
 
 The method used in this paper to determine the Weibull parameters is called the 
probability plotting technique. This technique is the best technique to demonstrate the 
versatility and capability of the Weibull function to new users. Once the Weibull 
parameters have been determined, the Weibull hazard rate function can be used in one of 
several ways to determine the optimum screening duration.  
 
 A program which implements the functions described in this paper which can be 
used to determine environmental stress screening durations is available from Accolade 
Engineering Solutions. We may be reached at info@accoladeeng.com. 
 
  


